Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Sparse Structure Search for Parameter-Efficient Tuning (2206.07382v1)

Published 15 Jun 2022 in cs.CL

Abstract: Adapting large pre-trained models (PTMs) through fine-tuning imposes prohibitive computational and storage burdens. Recent studies of parameter-efficient tuning (PET) find that only optimizing a small portion of parameters conditioned on PTMs could yield on-par performance compared to conventional fine-tuning. Generally, PET methods exquisitely design parameter-efficient modules (PET modules) which could be applied to arbitrary fine-grained positions inside PTMs. However, the effectiveness of these fine-grained positions largely relies on sophisticated manual designation, thereby usually producing sub-optimal results. In contrast to the manual designation, we explore constructing PET modules in an automatic manner. We automatically \textbf{S}earch for the \textbf{S}parse \textbf{S}tructure of \textbf{P}arameter-\textbf{E}fficient \textbf{T}uning (S$3$PET). Based on a unified framework of various PET methods, S$3$PET conducts the differentiable PET structure search through bi-level optimization and proposes shifted global sigmoid method to explicitly control the number of trainable parameters. Extensive experiments show that S$3$PET surpasses manual and random structures with less trainable parameters. The searched structures preserve more than 99\% fine-tuning performance with 0.01\% trainable parameters. Moreover, the advantage of S$3$PET is amplified with extremely low trainable parameters budgets (0.0009\%$\sim$0.01\%). The searched structures are transferable and explainable, providing suggestions and guidance for the future design of PET methods.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.