Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Unsupervised multi-branch Capsule for Hyperspectral and LiDAR classification (2206.07348v2)

Published 15 Jun 2022 in cs.CV and cs.AI

Abstract: With the convenient availability of remote sensing data, how to make models to interpret complex remote sensing data attracts wide attention. In remote sensing data, hyperspectral images contain spectral information and LiDAR contains elevation information. Hence, more explorations are warranted to better fuse the features of different source data. In this paper, we introduce semantic understanding to dynamically fuse data from two different sources, extract features of HSI and LiDAR through different capsule network branches and improve self-supervised loss and random rigid rotation in Canonical Capsule to a high-dimensional situation. Canonical Capsule computes the capsule decomposition of objects by permutation-equivariant attention and the process is self-supervised by training pairs of randomly rotated objects. After fusing the features of HSI and LiDAR with semantic understanding, the unsupervised extraction of spectral-spatial-elevation fusion features is achieved. With two real-world examples of HSI and LiDAR fused, the experimental results show that the proposed multi-branch high-dimensional canonical capsule algorithm can be effective for semantic understanding of HSI and LiDAR. It indicates that the model can extract HSI and LiDAR data features effectively as opposed to existing models for unsupervised extraction of multi-source RS data.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.