Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Human Eyes Inspired Recurrent Neural Networks are More Robust Against Adversarial Noises (2206.07282v2)

Published 15 Jun 2022 in cs.CV

Abstract: Humans actively observe the visual surroundings by focusing on salient objects and ignoring trivial details. However, computer vision models based on convolutional neural networks (CNN) often analyze visual input all at once through a single feed-forward pass. In this study, we designed a dual-stream vision model inspired by the human brain. This model features retina-like input layers and includes two streams: one determining the next point of focus (the fixation), while the other interprets the visuals surrounding the fixation. Trained on image recognition, this model examines an image through a sequence of fixations, each time focusing on different parts, thereby progressively building a representation of the image. We evaluated this model against various benchmarks in terms of object recognition, gaze behavior and adversarial robustness. Our findings suggest that the model can attend and gaze in ways similar to humans without being explicitly trained to mimic human attention, and that the model can enhance robustness against adversarial attacks due to its retinal sampling and recurrent processing. In particular, the model can correct its perceptual errors by taking more glances, setting itself apart from all feed-forward-only models. In conclusion, the interactions of retinal sampling, eye movement, and recurrent dynamics are important to human-like visual exploration and inference.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.