Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Automated Detection of Typed Links in Issue Trackers (2206.07182v1)

Published 14 Jun 2022 in cs.SE

Abstract: Stakeholders in software projects use issue trackers like JIRA to capture and manage issues, including requirements and bugs. To ease issue navigation and structure project knowledge, stakeholders manually connect issues via links of certain types that reflect different dependencies, such as Epic-, Block-, Duplicate-, or Relate- links. Based on a large dataset of 15 JIRA repositories, we study how well state-of-the-art machine learning models can automatically detect common link types. We found that a pure BERT model trained on titles and descriptions of linked issues significantly outperforms other optimized deep learning models, achieving an encouraging average macro F1-score of 0.64 for detecting 9 popular link types across all repositories (weighted F1-score of 0.73). For the specific Subtask- and Epic- links, the model achieved top F1-scores of 0.89 and 0.97, respectively. Our model does not simply learn the textual similarity of the issues. In general, shorter issue text seems to improve the prediction accuracy with a strong negative correlation of -0.70. We found that Relate-links often get confused with the other links, which suggests that they are likely used as default links in unclear cases. We also observed significant differences across the repositories, depending on how they are used and by whom.

Citations (6)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.