Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 225 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Goal, Feasibility, and Diversity-Oriented Deep Generative Models in Design (2206.07170v1)

Published 14 Jun 2022 in cs.LG

Abstract: Deep Generative Machine Learning Models (DGMs) have been growing in popularity across the design community thanks to their ability to learn and mimic complex data distributions. DGMs are conventionally trained to minimize statistical divergence between the distribution over generated data and distribution over the dataset on which they are trained. While sufficient for the task of generating "realistic" fake data, this objective is typically insufficient for design synthesis tasks. Instead, design problems typically call for adherence to design requirements, such as performance targets and constraints. Advancing DGMs in engineering design requires new training objectives which promote engineering design objectives. In this paper, we present the first Deep Generative Model that simultaneously optimizes for performance, feasibility, diversity, and target achievement. We benchmark performance of the proposed method against several Deep Generative Models over eight evaluation metrics that focus on feasibility, diversity, and satisfaction of design performance targets. Methods are tested on a challenging multi-objective bicycle frame design problem with skewed, multimodal data of different datatypes. The proposed framework was found to outperform all Deep Generative Models in six of eight metrics.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube