Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Most, And Least, Compact Spanning Trees of a Graph (2206.07104v2)

Published 14 Jun 2022 in cs.DC and cs.DM

Abstract: We introduce the concept of Most, and Least, Compact Spanning Trees - denoted respectively by $T*(G)$ and $T#(G)$ - of a simple, connected, undirected and unweighted graph $G(V, E, W)$. For a spanning tree $T(G) \in \mathcal{T}(G)$ to be considered $T*(G)$, where $\mathcal{T}(G)$ represents the set of all the spanning trees of the graph $G$, it must have the least average inter-vertex pair (shortest path) distances from amongst the members of the set $\mathcal{T}(G)$. Similarly, for it to be considered $T#(G)$, it must have the highest average inter-vertex pair (shortest path) distances. In this work, we present an iteratively greedy rank-and-regress method that produces at least one $T*(G)$ or $T#(G)$ by eliminating one extremal edge per iteration. The rank function for performing the elimination is based on the elements of the matrix of relative forest accessibilities of a graph and the related forest distance. We provide empirical evidence in support of our methodology using some standard graph families: complete graphs, the Erd\H{o}s-Renyi random graphs and the Barab\'{a}si-Albert scale-free graphs; and discuss computational complexity of the underlying methods which incur polynomial time costs.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.