Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

An Efficient HTN to STRIPS Encoding for Concurrent Plans (2206.07084v1)

Published 14 Jun 2022 in cs.AI

Abstract: The Hierarchical Task Network (HTN) formalism is used to express a wide variety of planning problems in terms of decompositions of tasks into subtaks. Many techniques have been proposed to solve such hierarchical planning problems. A particular technique is to encode hierarchical planning problems as classical STRIPS planning problems. One advantage of this technique is to benefit directly from the constant improvements made by STRIPS planners. However, there are still few effective and expressive encodings. In this paper, we present a new HTN to STRIPS encoding allowing to generate concurrent plans. We show experimentally that this encoding outperforms previous approaches on hierarchical IPC benchmarks.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.