Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Hierarchical-DBSCAN Method for Extracting Microservices from Monolithic Applications (2206.07010v1)

Published 14 Jun 2022 in cs.SE

Abstract: The microservices architectural style offers many advantages such as scalability, reusability and ease of maintainability. As such microservices has become a common architectural choice when developing new applications. Hence, to benefit from these advantages, monolithic applications need to be redesigned in order to migrate to a microservice based architecture. Due to the inherent complexity and high costs related to this process, it is crucial to automate this task. In this paper, we propose a method that can identify potential microservices from a given monolithic application. Our method takes as input the source code of the source application in order to measure the similarities and dependencies between all of the classes in the system using their interactions and the domain terminology employed within the code. These similarity values are then used with a variant of a density-based clustering algorithm to generate a hierarchical structure of the recommended microservices while identifying potential outlier classes. We provide an empirical evaluation of our approach through different experimental settings including a comparison with existing human-designed microservices and a comparison with 5 baselines. The results show that our method succeeds in generating microservices that are overall more cohesive and that have fewer interactions in-between them with up to 0.9 of precision score when compared to human-designed microservices.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.