Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Constellation Design for Deep Joint Source-Channel Coding (2206.07008v1)

Published 8 Jun 2022 in cs.IT, eess.SP, and math.IT

Abstract: Deep learning-based joint source-channel coding (JSCC) has shown excellent performance in image and feature transmission. However, the output values of the JSCC encoder are continuous, which makes the constellation of modulation complex and dense. It is hard and expensive to design radio frequency chains for transmitting such full-resolution constellation points. In this paper, two methods of mapping the full-resolution constellation to finite constellation are proposed for real system implementation. The constellation mapping results of the proposed methods correspond to regular constellation and irregular constellation, respectively. We apply the methods to existing deep JSCC models and evaluate them on AWGN channels with different signal-to-noise ratios (SNRs). Experimental results show that the proposed methods outperform the traditional uniform quadrature amplitude modulation (QAM) constellation mapping method by only adding a few additional parameters.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.