Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

SpecNet2: Orthogonalization-free spectral embedding by neural networks (2206.06644v1)

Published 14 Jun 2022 in stat.ML and cs.LG

Abstract: Spectral methods which represent data points by eigenvectors of kernel matrices or graph Laplacian matrices have been a primary tool in unsupervised data analysis. In many application scenarios, parametrizing the spectral embedding by a neural network that can be trained over batches of data samples gives a promising way to achieve automatic out-of-sample extension as well as computational scalability. Such an approach was taken in the original paper of SpectralNet (Shaham et al. 2018), which we call SpecNet1. The current paper introduces a new neural network approach, named SpecNet2, to compute spectral embedding which optimizes an equivalent objective of the eigen-problem and removes the orthogonalization layer in SpecNet1. SpecNet2 also allows separating the sampling of rows and columns of the graph affinity matrix by tracking the neighbors of each data point through the gradient formula. Theoretically, we show that any local minimizer of the new orthogonalization-free objective reveals the leading eigenvectors. Furthermore, global convergence for this new orthogonalization-free objective using a batch-based gradient descent method is proved. Numerical experiments demonstrate the improved performance and computational efficiency of SpecNet2 on simulated data and image datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube