Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Accelerating CPU-Based Sparse General Matrix Multiplication With Binary Row Merging (2206.06611v2)

Published 14 Jun 2022 in cs.DC, cs.MS, and cs.PF

Abstract: Sparse general matrix multiplication (SpGEMM) is a fundamental building block for many real-world applications. Since SpGEMM is a well-known memory-bounded application with vast and irregular memory accesses, considering the memory access efficiency is of critical importance for SpGEMM's performance. Yet, the existing methods put less consideration into the memory subsystem and achieved suboptimal performance. In this paper, we thoroughly analyze the memory access patterns of SpGEMM and their influences on the memory subsystem. Based on the analysis, we propose a novel and more efficient accumulation method named BRMerge for the multi-core CPU architectures. The BRMerge accumulation method follows the row-wise dataflow. It first accesses the $B$ matrix, generates the intermediate lists for one output row, and stores these intermediate lists in a consecutive memory space, which is implemented by a ping-pong buffer. It then immediately merges these intermediate lists generated in the previous phase two by two in a tree-like hierarchy between two ping-pong buffers. The architectural benefits of BRMerge are 1) streaming access patterns, 2) minimized TLB cache miss rate, and 3) reasonably high L1/L2 cache hit rates, which result in both low access latency and high bandwidth utilization when performing SpGEMM. Based on the BRMerge accumulation method, we propose two SpGEMM libraries named BRMerge-Upper and BRMerge-Precise, which use different allocation methods. Performance evaluations with 26 commonly used benchmarks on two CPU servers show that the proposed SpGEMM libraries significantly outperform the state-of-the-art SpGEMM libraries.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.