Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Uncertainty with Artificial Neural Networks for Improved Predictive Process Monitoring (2206.06317v1)

Published 13 Jun 2022 in cs.LG and cs.AI

Abstract: The inability of artificial neural networks to assess the uncertainty of their predictions is an impediment to their widespread use. We distinguish two types of learnable uncertainty: model uncertainty due to a lack of training data and noise-induced observational uncertainty. Bayesian neural networks use solid mathematical foundations to learn the model uncertainties of their predictions. The observational uncertainty can be calculated by adding one layer to these networks and augmenting their loss functions. Our contribution is to apply these uncertainty concepts to predictive process monitoring tasks to train uncertainty-based models to predict the remaining time and outcomes. Our experiments show that uncertainty estimates allow more and less accurate predictions to be differentiated and confidence intervals to be constructed in both regression and classification tasks. These conclusions remain true even in early stages of running processes. Moreover, the deployed techniques are fast and produce more accurate predictions. The learned uncertainty could increase users' confidence in their process prediction systems, promote better cooperation between humans and these systems, and enable earlier implementations with smaller datasets.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.