Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pursuing More Effective Graph Spectral Sparsifiers via Approximate Trace Reduction (2206.06223v1)

Published 13 Jun 2022 in cs.DS, cs.NA, math.NA, and math.SP

Abstract: Spectral graph sparsification aims to find ultra-sparse subgraphs which can preserve spectral properties of original graphs. In this paper, a new spectral criticality metric based on trace reduction is first introduced for identifying spectrally important off-subgraph edges. Then, a physics-inspired truncation strategy and an approach using approximate inverse of Cholesky factor are proposed to compute the approximate trace reduction efficiently. Combining them with the iterative densification scheme in \cite{feng2019grass} and the strategy of excluding spectrally similar off-subgraph edges in \cite{fegrass}, we develop a highly effective graph sparsification algorithm. The proposed method has been validated with various kinds of graphs. Experimental results show that it always produces sparsifiers with remarkably better quality than the state-of-the-art GRASS \cite{feng2019grass} in same computational cost, enabling more than 40% time reduction for preconditioned iterative equation solver on average. In the applications of power grid transient analysis and spectral graph partitioning, the derived iterative solver shows 3.3X or more advantages on runtime and memory cost, over the approach based on direct sparse solver.

Citations (8)

Summary

We haven't generated a summary for this paper yet.