Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Analysis of function approximation and stability of general DNNs in directed acyclic graphs using un-rectifying analysis (2206.05997v1)

Published 13 Jun 2022 in cs.LG

Abstract: A general lack of understanding pertaining to deep feedforward neural networks (DNNs) can be attributed partly to a lack of tools with which to analyze the composition of non-linear functions, and partly to a lack of mathematical models applicable to the diversity of DNN architectures. In this paper, we made a number of basic assumptions pertaining to activation functions, non-linear transformations, and DNN architectures in order to use the un-rectifying method to analyze DNNs via directed acyclic graphs (DAGs). DNNs that satisfy these assumptions are referred to as general DNNs. Our construction of an analytic graph was based on an axiomatic method in which DAGs are built from the bottom-up through the application of atomic operations to basic elements in accordance with regulatory rules. This approach allows us to derive the properties of general DNNs via mathematical induction. We show that using the proposed approach, some properties hold true for general DNNs can be derived. This analysis advances our understanding of network functions and could promote further theoretical insights if the host of analytical tools for graphs can be leveraged.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.