Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

InBiaseD: Inductive Bias Distillation to Improve Generalization and Robustness through Shape-awareness (2206.05846v1)

Published 12 Jun 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Humans rely less on spurious correlations and trivial cues, such as texture, compared to deep neural networks which lead to better generalization and robustness. It can be attributed to the prior knowledge or the high-level cognitive inductive bias present in the brain. Therefore, introducing meaningful inductive bias to neural networks can help learn more generic and high-level representations and alleviate some of the shortcomings. We propose InBiaseD to distill inductive bias and bring shape-awareness to the neural networks. Our method includes a bias alignment objective that enforces the networks to learn more generic representations that are less vulnerable to unintended cues in the data which results in improved generalization performance. InBiaseD is less susceptible to shortcut learning and also exhibits lower texture bias. The better representations also aid in improving robustness to adversarial attacks and we hence plugin InBiaseD seamlessly into the existing adversarial training schemes to show a better trade-off between generalization and robustness.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube