Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

MLLess: Achieving Cost Efficiency in Serverless Machine Learning Training (2206.05786v1)

Published 12 Jun 2022 in cs.DC

Abstract: Function-as-a-Service (FaaS) has raised a growing interest in how to "tame" serverless computing to enable domain-specific use cases such as data-intensive applications and ML, to name a few. Recently, several systems have been implemented for training ML models. Certainly, these research articles are significant steps in the correct direction. However, they do not completely answer the nagging question of when serverless ML training can be more cost-effective compared to traditional "serverful" computing. To help in this endeavor, we propose MLLess, a FaaS-based ML training prototype built atop IBM Cloud Functions. To boost cost-efficiency, MLLess implements two innovative optimizations tailored to the traits of serverless computing: on one hand, a significance filter, to make indirect communication more effective, and on the other hand, a scale-in auto-tuner, to reduce cost by benefiting from the FaaS sub-second billing model (often per 100ms). Our results certify that MLLess can be 15X faster than serverful ML systems at a lower cost for sparse ML models that exhibit fast convergence such as sparse logistic regression and matrix factorization. Furthermore, our results show that MLLess can easily scale out to increasingly large fleets of serverless workers.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube