Papers
Topics
Authors
Recent
2000 character limit reached

Regularization Penalty Optimization for Addressing Data Quality Variance in OoD Algorithms (2206.05749v1)

Published 12 Jun 2022 in cs.LG

Abstract: Due to the poor generalization performance of traditional empirical risk minimization (ERM) in the case of distributional shift, Out-of-Distribution (OoD) generalization algorithms receive increasing attention. However, OoD generalization algorithms overlook the great variance in the quality of training data, which significantly compromises the accuracy of these methods. In this paper, we theoretically reveal the relationship between training data quality and algorithm performance and analyze the optimal regularization scheme for Lipschitz regularized invariant risk minimization. A novel algorithm is proposed based on the theoretical results to alleviate the influence of low-quality data at both the sample level and the domain level. The experiments on both the regression and classification benchmarks validate the effectiveness of our method with statistical significance.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.