Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Resilience for Distributed Consensus with Constraints (2206.05662v3)

Published 12 Jun 2022 in eess.SY and cs.SY

Abstract: This paper proposes a new approach that enables multi-agent systems to achieve resilient \textit{constrained} consensus in the presence of Byzantine attacks, in contrast to existing literature that is only applicable to \textit{unconstrained} resilient consensus problems. The key enabler for our approach is a new device called a \textit{$(\gamma_i,\alpha_i)$-resilient convex combination}, which allows normal agents in the network to utilize their locally available information to automatically isolate the impact of the Byzantine agents. Such a resilient convex combination is computable through linear programming, whose complexity scales well with the size of the overall system. By applying this new device to multi-agent systems, we introduce network and constraint redundancy conditions under which resilient constrained consensus can be achieved with an exponential convergence rate. We also provide insights on the design of a network such that the redundancy conditions are satisfied. Finally, numerical simulations and an example of safe multi-agent learning are provided to demonstrate the effectiveness of the proposed results.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube