Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Average-case hardness of estimating probabilities of random quantum circuits with a linear scaling in the error exponent (2206.05642v1)

Published 12 Jun 2022 in quant-ph and cs.CC

Abstract: We consider the hardness of computing additive approximations to output probabilities of random quantum circuits. We consider three random circuit families, namely, Haar random, $p=1$ QAOA, and random IQP circuits. Our results are as follows. For Haar random circuits with $m$ gates, we improve on prior results by showing $\mathsf{coC_=P}$ hardness of average-case additive approximations to an imprecision of $2{-O(m)}$. Efficient classical simulation of such problems would imply the collapse of the polynomial hierarchy. For constant depth circuits i.e., when $m=O(n)$, this linear scaling in the exponent is within a constant of the scaling required to show hardness of sampling. Prior to our work, such a result was shown only for Boson Sampling in Bouland et al (2021). We also use recent results in polynomial interpolation to show $\mathsf{coC_=P}$ hardness under $\mathsf{BPP}$ reductions rather than $\mathsf{BPP}{\mathsf{NP}}$ reductions. This improves the results of prior work for Haar random circuits both in terms of the error scaling and the power of reductions. Next, we consider random $p=1$ QAOA and IQP circuits and show that in the average-case, it is $\mathsf{coC_=P}$ hard to approximate the output probability to within an additive error of $2{-O(n)}$. For $p=1$ QAOA circuits, this work constitutes the first average-case hardness result for the problem of approximating output probabilities for random QAOA circuits, which include Sherrington-Kirkpatrick and Erd\"{o}s-Renyi graphs. For IQP circuits, a consequence of our results is that approximating the Ising partition function with imaginary couplings to an additive error of $2{-O(n)}$ is hard even in the average-case, which extends prior work on worst-case hardness of multiplicative approximation to Ising partition functions.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)