Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Learning Imbalanced Datasets with Maximum Margin Loss (2206.05380v1)

Published 11 Jun 2022 in cs.LG and cs.AI

Abstract: A learning algorithm referred to as Maximum Margin (MM) is proposed for considering the class-imbalance data learning issue: the trained model tends to predict the majority of classes rather than the minority ones. That is, underfitting for minority classes seems to be one of the challenges of generalization. For a good generalization of the minority classes, we design a new Maximum Margin (MM) loss function, motivated by minimizing a margin-based generalization bound through the shifting decision bound. The theoretically-principled label-distribution-aware margin (LDAM) loss was successfully applied with prior strategies such as re-weighting or re-sampling along with the effective training schedule. However, they did not investigate the maximum margin loss function yet. In this study, we investigate the performances of two types of hard maximum margin-based decision boundary shift with LDAM's training schedule on artificially imbalanced CIFAR-10/100 for fair comparisons and effectiveness.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube