Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Accelerated Algorithms for Constrained Nonconvex-Nonconcave Min-Max Optimization and Comonotone Inclusion (2206.05248v6)

Published 10 Jun 2022 in math.OC, cs.DS, and cs.LG

Abstract: We study constrained comonotone min-max optimization, a structured class of nonconvex-nonconcave min-max optimization problems, and their generalization to comonotone inclusion. In our first contribution, we extend the Extra Anchored Gradient (EAG) algorithm, originally proposed by Yoon and Ryu (2021) for unconstrained min-max optimization, to constrained comonotone min-max optimization and comonotone inclusion, achieving an optimal convergence rate of $O\left(\frac{1}{T}\right)$ among all first-order methods. Additionally, we prove that the algorithm's iterations converge to a point in the solution set. In our second contribution, we extend the Fast Extra Gradient (FEG) algorithm, as developed by Lee and Kim (2021), to constrained comonotone min-max optimization and comonotone inclusion, achieving the same $O\left(\frac{1}{T}\right)$ convergence rate. This rate is applicable to the broadest set of comonotone inclusion problems yet studied in the literature. Our analyses are based on simple potential function arguments, which might be useful for analyzing other accelerated algorithms.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.