Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

LTL-Transfer: Skill Transfer for Temporal Task Specification (2206.05096v3)

Published 10 Jun 2022 in cs.RO

Abstract: Deploying robots in real-world environments, such as households and manufacturing lines, requires generalization across novel task specifications without violating safety constraints. Linear temporal logic (LTL) is a widely used task specification language with a compositional grammar that naturally induces commonalities among tasks while preserving safety guarantees. However, most prior work on reinforcement learning with LTL specifications treats every new task independently, thus requiring large amounts of training data to generalize. We propose LTL-Transfer, a zero-shot transfer algorithm that composes task-agnostic skills learned during training to safely satisfy a wide variety of novel LTL task specifications. Experiments in Minecraft-inspired domains show that after training on only 50 tasks, LTL-Transfer can solve over 90% of 100 challenging unseen tasks and 100% of 300 commonly used novel tasks without violating any safety constraints. We deployed LTL-Transfer at the task-planning level of a quadruped mobile manipulator to demonstrate its zero-shot transfer ability for fetch-and-deliver and navigation tasks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube