Papers
Topics
Authors
Recent
2000 character limit reached

A No-reference Quality Assessment Metric for Point Cloud Based on Captured Video Sequences (2206.05054v2)

Published 9 Jun 2022 in eess.IV and cs.CV

Abstract: Point cloud is one of the most widely used digital formats of 3D models, the visual quality of which is quite sensitive to distortions such as downsampling, noise, and compression. To tackle the challenge of point cloud quality assessment (PCQA) in scenarios where reference is not available, we propose a no-reference quality assessment metric for colored point cloud based on captured video sequences. Specifically, three video sequences are obtained by rotating the camera around the point cloud through three specific orbits. The video sequences not only contain the static views but also include the multi-frame temporal information, which greatly helps understand the human perception of the point clouds. Then we modify the ResNet3D as the feature extraction model to learn the correlation between the capture videos and corresponding subjective quality scores. The experimental results show that our method outperforms most of the state-of-the-art full-reference and no-reference PCQA metrics, which validates the effectiveness of the proposed method.

Citations (43)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.