Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convolutional layers are equivariant to discrete shifts but not continuous translations (2206.04979v4)

Published 10 Jun 2022 in cs.CV and cs.LG

Abstract: The purpose of this short and simple note is to clarify a common misconception about convolutional neural networks (CNNs). CNNs are made up of convolutional layers which are shift equivariant due to weight sharing. However, convolutional layers are not translation equivariant, even when boundary effects are ignored and when pooling and subsampling are absent. This is because shift equivariance is a discrete symmetry while translation equivariance is a continuous symmetry. This fact is well known among researchers in equivariant machine learning, but is usually overlooked among non-experts. To minimize confusion, we suggest using the term shift equivariance' to refer to discrete shifts in pixels andtranslation equivariance' to refer to continuous translations.

Citations (1)

Summary

We haven't generated a summary for this paper yet.