Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 76 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural Laplace: Learning diverse classes of differential equations in the Laplace domain (2206.04843v3)

Published 10 Jun 2022 in cs.LG, cs.AI, and stat.ML

Abstract: Neural Ordinary Differential Equations model dynamical systems with ODEs learned by neural networks. However, ODEs are fundamentally inadequate to model systems with long-range dependencies or discontinuities, which are common in engineering and biological systems. Broader classes of differential equations (DE) have been proposed as remedies, including delay differential equations and integro-differential equations. Furthermore, Neural ODE suffers from numerical instability when modelling stiff ODEs and ODEs with piecewise forcing functions. In this work, we propose Neural Laplace, a unified framework for learning diverse classes of DEs including all the aforementioned ones. Instead of modelling the dynamics in the time domain, we model it in the Laplace domain, where the history-dependencies and discontinuities in time can be represented as summations of complex exponentials. To make learning more efficient, we use the geometrical stereographic map of a Riemann sphere to induce more smoothness in the Laplace domain. In the experiments, Neural Laplace shows superior performance in modelling and extrapolating the trajectories of diverse classes of DEs, including the ones with complex history dependency and abrupt changes.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com