Scale up your In-Memory Accelerator: Leveraging Wireless-on-Chip Communication for AIMC-based CNN Inference (2206.04796v1)
Abstract: Analog In-Memory Computing (AIMC) is emerging as a disruptive paradigm for heterogeneous computing, potentially delivering orders of magnitude better peak performance and efficiency over traditional digital signal processing architectures on Matrix-Vector multiplication. However, to sustain this throughput in real-world applications, AIMC tiles must be supplied with data at very high bandwidth and low latency; this poses an unprecedented pressure on the on-chip communication infrastructure, which becomes the system's performance and efficiency bottleneck. In this context, the performance and plasticity of emerging on-chip wireless communication paradigms provide the required breakthrough to up-scale on-chip communication in large AIMC devices. This work presents a many-tile AIMC architecture with inter-tile wireless communication that integrates multiple heterogeneous computing clusters, embedding a mix of parallel RISC-V cores and AIMC tiles. We perform an extensive design space exploration of the proposed architecture and discuss the benefits of exploiting emerging on-chip communication technologies such as wireless transceivers in the millimeter-wave and terahertz bands.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.