Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

DiSparse: Disentangled Sparsification for Multitask Model Compression (2206.04662v1)

Published 9 Jun 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Despite the popularity of Model Compression and Multitask Learning, how to effectively compress a multitask model has been less thoroughly analyzed due to the challenging entanglement of tasks in the parameter space. In this paper, we propose DiSparse, a simple, effective, and first-of-its-kind multitask pruning and sparse training scheme. We consider each task independently by disentangling the importance measurement and take the unanimous decisions among all tasks when performing parameter pruning and selection. Our experimental results demonstrate superior performance on various configurations and settings compared to popular sparse training and pruning methods. Besides the effectiveness in compression, DiSparse also provides a powerful tool to the multitask learning community. Surprisingly, we even observed better performance than some dedicated multitask learning methods in several cases despite the high model sparsity enforced by DiSparse. We analyzed the pruning masks generated with DiSparse and observed strikingly similar sparse network architecture identified by each task even before the training starts. We also observe the existence of a "watershed" layer where the task relatedness sharply drops, implying no benefits in continued parameters sharing. Our code and models will be available at: https://github.com/SHI-Labs/DiSparse-Multitask-Model-Compression.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube