Papers
Topics
Authors
Recent
2000 character limit reached

Pragmatically Learning from Pedagogical Demonstrations in Multi-Goal Environments (2206.04546v3)

Published 9 Jun 2022 in cs.LG

Abstract: Learning from demonstration methods usually leverage close to optimal demonstrations to accelerate training. By contrast, when demonstrating a task, human teachers deviate from optimal demonstrations and pedagogically modify their behavior by giving demonstrations that best disambiguate the goal they want to demonstrate. Analogously, human learners excel at pragmatically inferring the intent of the teacher, facilitating communication between the two agents. These mechanisms are critical in the few demonstrations regime, where inferring the goal is more difficult. In this paper, we implement pedagogy and pragmatism mechanisms by leveraging a Bayesian model of Goal Inference from demonstrations (BGI). We highlight the benefits of this model in multi-goal teacher-learner setups with two artificial agents that learn with goal-conditioned Reinforcement Learning. We show that combining BGI-agents (a pedagogical teacher and a pragmatic learner) results in faster learning and reduced goal ambiguity over standard learning from demonstrations, especially in the few demonstrations regime. We provide the code for our experiments (https://github.com/Caselles/NeurIPS22-demonstrations-pedagogy-pragmatism), as well as an illustrative video explaining our approach (https://youtu.be/V4n16IjkNyw).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.