Novel resolution analysis for the Radon transform in $\mathbb R^2$ for functions with rough edges (2206.04545v1)
Abstract: Let $f$ be a function in $\mathbb R2$, which has a jump across a smooth curve $\mathcal S$ with nonzero curvature. We consider a family of functions $f_\epsilon$ with jumps across a family of curves $\mathcal S_\epsilon$. Each $\mathcal S_\epsilon$ is an $O(\epsilon)$-size perturbation of $\mathcal S$, which scales like $O(\epsilon{-1/2})$ along $\mathcal S$. Let $f_\epsilon{\text{rec}}$ be the reconstruction of $f_\epsilon$ from its discrete Radon transform data, where $\epsilon$ is the data sampling rate. A simple asymptotic (as $\epsilon\to0$) formula to approximate $f_\epsilon{\text{rec}}$ in any $O(\epsilon)$-size neighborhood of $\mathcal S$ was derived heuristically in an earlier paper of the author. Numerical experiments revealed that the formula is highly accurate even for nonsmooth (i.e., only H{\"o}lder continuous) $\mathcal S_\epsilon$. In this paper we provide a full proof of this result, which says that the magnitude of the error between $f_\epsilon{\text{rec}}$ and its approximation is $O(\epsilon{1/2}\ln(1/\epsilon))$. The main assumption is that the level sets of the function $H_0(\cdot,\epsilon)$, which parametrizes the perturbation $\mathcal S\to\mathcal S_\epsilon$, are not too dense.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.