Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Missing Link: Finding label relations across datasets (2206.04453v2)

Published 9 Jun 2022 in cs.CV

Abstract: Computer vision is driven by the many datasets available for training or evaluating novel methods. However, each dataset has a different set of class labels, visual definition of classes, images following a specific distribution, annotation protocols, etc. In this paper we explore the automatic discovery of visual-semantic relations between labels across datasets. We aim to understand how instances of a certain class in a dataset relate to the instances of another class in another dataset. Are they in an identity, parent/child, overlap relation? Or is there no link between them at all? To find relations between labels across datasets, we propose methods based on language, on vision, and on their combination. We show that we can effectively discover label relations across datasets, as well as their type. We apply our method to four applications: understand label relations, identify missing aspects, increase label specificity, and predict transfer learning gains. We conclude that label relations cannot be established by looking at the names of classes alone, as they depend strongly on how each of the datasets was constructed.

Citations (10)

Summary

We haven't generated a summary for this paper yet.