Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Kernelization for Feedback Vertex Set via Elimination Distance to a Forest (2206.04387v1)

Published 9 Jun 2022 in cs.DS

Abstract: We study efficient preprocessing for the undirected Feedback Vertex Set problem, a fundamental problem in graph theory which asks for a minimum-sized vertex set whose removal yields an acyclic graph. More precisely, we aim to determine for which parameterizations this problem admits a polynomial kernel. While a characterization is known for the related Vertex Cover problem based on the recently introduced notion of bridge-depth, it remained an open problem whether this could be generalized to Feedback Vertex Set. The answer turns out to be negative; the existence of polynomial kernels for structural parameterizations for Feedback Vertex Set is governed by the elimination distance to a forest. Under the standard assumption that NP is not a subset of coNP/poly, we prove that for any minor-closed graph class $\mathcal G$, Feedback Vertex Set parameterized by the size of a modulator to $\mathcal G$ has a polynomial kernel if and only if $\mathcal G$ has bounded elimination distance to a forest. This captures and generalizes all existing kernels for structural parameterizations of the Feedback Vertex Set problem.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube