Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 418 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Value Memory Graph: A Graph-Structured World Model for Offline Reinforcement Learning (2206.04384v3)

Published 9 Jun 2022 in cs.LG and cs.AI

Abstract: Reinforcement Learning (RL) methods are typically applied directly in environments to learn policies. In some complex environments with continuous state-action spaces, sparse rewards, and/or long temporal horizons, learning a good policy in the original environments can be difficult. Focusing on the offline RL setting, we aim to build a simple and discrete world model that abstracts the original environment. RL methods are applied to our world model instead of the environment data for simplified policy learning. Our world model, dubbed Value Memory Graph (VMG), is designed as a directed-graph-based Markov decision process (MDP) of which vertices and directed edges represent graph states and graph actions, separately. As state-action spaces of VMG are finite and relatively small compared to the original environment, we can directly apply the value iteration algorithm on VMG to estimate graph state values and figure out the best graph actions. VMG is trained from and built on the offline RL dataset. Together with an action translator that converts the abstract graph actions in VMG to real actions in the original environment, VMG controls agents to maximize episode returns. Our experiments on the D4RL benchmark show that VMG can outperform state-of-the-art offline RL methods in several goal-oriented tasks, especially when environments have sparse rewards and long temporal horizons. Code is available at https://github.com/TsuTikgiau/ValueMemoryGraph

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.