Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Learning Non-Vacuous Generalization Bounds from Optimization (2206.04359v2)

Published 9 Jun 2022 in cs.LG and cs.AI

Abstract: One of the fundamental challenges in the deep learning community is to theoretically understand how well a deep neural network generalizes to unseen data. However, current approaches often yield generalization bounds that are either too loose to be informative of the true generalization error or only valid to the compressed nets. In this study, we present a simple yet non-vacuous generalization bound from the optimization perspective. We achieve this goal by leveraging that the hypothesis set accessed by stochastic gradient algorithms is essentially fractal-like and thus can derive a tighter bound over the algorithm-dependent Rademacher complexity. The main argument rests on modeling the discrete-time recursion process via a continuous-time stochastic differential equation driven by fractional Brownian motion. Numerical studies demonstrate that our approach is able to yield plausible generalization guarantees for modern neural networks such as ResNet and Vision Transformer, even when they are trained on a large-scale dataset (e.g. ImageNet-1K).

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube