Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CLTS+: A New Chinese Long Text Summarization Dataset with Abstractive Summaries (2206.04253v1)

Published 9 Jun 2022 in cs.CL and cs.AI

Abstract: The abstractive methods lack of creative ability is particularly a problem in automatic text summarization. The summaries generated by models are mostly extracted from the source articles. One of the main causes for this problem is the lack of dataset with abstractiveness, especially for Chinese. In order to solve this problem, we paraphrase the reference summaries in CLTS, the Chinese Long Text Summarization dataset, correct errors of factual inconsistencies, and propose the first Chinese Long Text Summarization dataset with a high level of abstractiveness, CLTS+, which contains more than 180K article-summary pairs and is available online. Additionally, we introduce an intrinsic metric based on co-occurrence words to evaluate the dataset we constructed. We analyze the extraction strategies used in CLTS+ summaries against other datasets to quantify the abstractiveness and difficulty of our new data and train several baselines on CLTS+ to verify the utility of it for improving the creative ability of models.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.