Structure-Preserving Model Order Reduction for Index Two Port-Hamiltonian Descriptor Systems (2206.03942v1)
Abstract: We present a new optimization-based structure-preserving model order reduction (MOR) method for port-Hamiltonian descriptor systems (pH-DAEs) with differentiation index two. Our method is based on a novel parameterization that allows us to represent any linear time-invariant pH-DAE with a minimal number of parameters, which makes it well-suited to model reduction. We propose two algorithms which directly optimize the parameters of a reduced model to approximate a given large-scale model with respect to either the H-infinity or the H-2 norm. This approach has several benefits. Our parameterization ensures that the reduced model is again a pH-DAE system and enables a compact representation of the algebraic part of the large-scale model, which in projection-based methods often requires a more involved treatment. The direct optimization is entirely based on transfer function evaluations of the large-scale model and is therefore independent of the system matrices' structure. Numerical experiments are conducted to illustrate the high accuracy and small reduced model orders in comparison to other structure-preserving MOR methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.