Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Lower Bounds and Nearly Optimal Algorithms in Distributed Learning with Communication Compression (2206.03665v2)

Published 8 Jun 2022 in cs.LG and math.OC

Abstract: Recent advances in distributed optimization and learning have shown that communication compression is one of the most effective means of reducing communication. While there have been many results on convergence rates under communication compression, a theoretical lower bound is still missing. Analyses of algorithms with communication compression have attributed convergence to two abstract properties: the unbiased property or the contractive property. They can be applied with either unidirectional compression (only messages from workers to server are compressed) or bidirectional compression. In this paper, we consider distributed stochastic algorithms for minimizing smooth and non-convex objective functions under communication compression. We establish a convergence lower bound for algorithms whether using unbiased or contractive compressors in unidirection or bidirection. To close the gap between the lower bound and the existing upper bounds, we further propose an algorithm, NEOLITHIC, which almost reaches our lower bound (up to logarithm factors) under mild conditions. Our results also show that using contractive bidirectional compression can yield iterative methods that converge as fast as those using unbiased unidirectional compression. The experimental results validate our findings.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.