Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Contributor-Aware Defenses Against Adversarial Backdoor Attacks (2206.03583v1)

Published 28 May 2022 in cs.CR, cs.AI, cs.CV, and cs.LG

Abstract: Deep neural networks for image classification are well-known to be vulnerable to adversarial attacks. One such attack that has garnered recent attention is the adversarial backdoor attack, which has demonstrated the capability to perform targeted misclassification of specific examples. In particular, backdoor attacks attempt to force a model to learn spurious relations between backdoor trigger patterns and false labels. In response to this threat, numerous defensive measures have been proposed; however, defenses against backdoor attacks focus on backdoor pattern detection, which may be unreliable against novel or unexpected types of backdoor pattern designs. We introduce a novel re-contextualization of the adversarial setting, where the presence of an adversary implicitly admits the existence of multiple database contributors. Then, under the mild assumption of contributor awareness, it becomes possible to exploit this knowledge to defend against backdoor attacks by destroying the false label associations. We propose a contributor-aware universal defensive framework for learning in the presence of multiple, potentially adversarial data sources that utilizes semi-supervised ensembles and learning from crowds to filter the false labels produced by adversarial triggers. Importantly, this defensive strategy is agnostic to backdoor pattern design, as it functions without needing -- or even attempting -- to perform either adversary identification or backdoor pattern detection during either training or inference. Our empirical studies demonstrate the robustness of the proposed framework against adversarial backdoor attacks from multiple simultaneous adversaries.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube