Papers
Topics
Authors
Recent
2000 character limit reached

Sampling Frequency Thresholds for Quantum Advantage of Quantum Approximate Optimization Algorithm (2206.03579v2)

Published 7 Jun 2022 in quant-ph and cs.CC

Abstract: In this work, we compare the performance of the Quantum Approximate Optimization Algorithm (QAOA) with state-of-the-art classical solvers such as Gurobi and MQLib to solve the combinatorial optimization problem MaxCut on 3-regular graphs. The goal is to identify under which conditions QAOA can achieve "quantum advantage" over classical algorithms, in terms of both solution quality and time to solution. One might be able to achieve quantum advantage on hundreds of qubits and moderate depth $p$ by sampling the QAOA state at a frequency of order 10 kHz. We observe, however, that classical heuristic solvers are capable of producing high-quality approximate solutions in linear time complexity. In order to match this quality for $\textit{large}$ graph sizes $N$, a quantum device must support depth $p>11$. Otherwise, we demonstrate that the number of required samples grows exponentially with $N$, hindering the scalability of QAOA with $p\leq11$. These results put challenging bounds on achieving quantum advantage for QAOA MaxCut on 3-regular graphs. Other problems, such as different graphs, weighted MaxCut, maximum independent set, and 3-SAT, may be better suited for achieving quantum advantage on near-term quantum devices.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.