Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Overcoming the Long Horizon Barrier for Sample-Efficient Reinforcement Learning with Latent Low-Rank Structure (2206.03569v4)

Published 7 Jun 2022 in cs.LG

Abstract: The practicality of reinforcement learning algorithms has been limited due to poor scaling with respect to the problem size, as the sample complexity of learning an $\epsilon$-optimal policy is $\tilde{\Omega}\left(|S||A|H3 / \epsilon2\right)$ over worst case instances of an MDP with state space $S$, action space $A$, and horizon $H$. We consider a class of MDPs for which the associated optimal $Q*$ function is low rank, where the latent features are unknown. While one would hope to achieve linear sample complexity in $|S|$ and $|A|$ due to the low rank structure, we show that without imposing further assumptions beyond low rank of $Q*$, if one is constrained to estimate the $Q$ function using only observations from a subset of entries, there is a worst case instance in which one must incur a sample complexity exponential in the horizon $H$ to learn a near optimal policy. We subsequently show that under stronger low rank structural assumptions, given access to a generative model, Low Rank Monte Carlo Policy Iteration (LR-MCPI) and Low Rank Empirical Value Iteration (LR-EVI) achieve the desired sample complexity of $\tilde{O}\left((|S|+|A|)\mathrm{poly}(d,H)/\epsilon2\right)$ for a rank $d$ setting, which is minimax optimal with respect to the scaling of $|S|, |A|$, and $\epsilon$. In contrast to literature on linear and low-rank MDPs, we do not require a known feature mapping, our algorithm is computationally simple, and our results hold for long time horizons. Our results provide insights on the minimal low-rank structural assumptions required on the MDP with respect to the transition kernel versus the optimal action-value function.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.