Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Model-Based Reinforcement Learning Approach for PID Design (2206.03567v1)

Published 7 Jun 2022 in eess.SY and cs.SY

Abstract: Proportional-integral-derivative (PID) controller is widely used across various industrial process control applications because of its straightforward implementation. However, it can be challenging to fine-tune the PID parameters in practice to achieve robust performance. The paper proposes a model-based reinforcement learning (RL) framework to design PID controllers leveraging the probabilistic inference for learning control (PILCO) method and Kullback-Leibler divergence (KLD). Since PID controllers have a much more interpretable control structure than a network basis function, an optimal policy given by PILCO is transformed into a set of robust PID tuning parameters for underactuated mechanical systems. The presented method is general and can blend with several model-based and model-free algorithms. The performance of the devised PID controllers is demonstrated with simulation studies for a benchmark cart-pole system under disturbances and system parameter uncertainties.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.