Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 133 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Vertex-critical $(P_3+\ell P_1)$-free and vertex-critical (gem, co-gem)-free graphs (2206.03422v1)

Published 7 Jun 2022 in math.CO and cs.DM

Abstract: A graph $G$ is $k$-vertex-critical if $\chi(G)=k$ but $\chi(G-v)<k$ for all $v\in V(G)$ where $\chi(G)$ denotes the chromatic number of $G$. We show that there are only finitely many $k$-critical $(P_3+\ell P_1)$-free graphs for all $k$ and all $\ell$. Together with previous results, the only graphs $H$ for which it is unknown if there are an infinite number of $k$-vertex-critical $H$-free graphs is $H=(P_4+\ell P_1)$ for all $\ell\ge 1$. We consider a restriction on the smallest open case, and show that there are only finitely many $k$-vertex-critical (gem, co-gem)-free graphs for all $k$, where gem$=\overline{P_4+P_1}$. To do this, we show the stronger result that every vertex-critical (gem, co-gem)-free graph is either complete or a clique expansion of $C_5$. This characterization allows us to give the complete list of all $k$-vertex-critical (gem, co-gem)-free graphs for all $k\le 16$

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.