Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

False Consensus, Information Theory, and Prediction Markets (2206.02993v2)

Published 7 Jun 2022 in cs.GT and econ.TH

Abstract: We study a setting where Bayesian agents with a common prior have private information related to an event's outcome and sequentially make public announcements relating to their information. Our main result shows that when agents' private information is independent conditioning on the event's outcome whenever agents have similar beliefs about the outcome, their information is aggregated. That is, there is no false consensus. Our main result has a short proof based on a natural information theoretic framework. A key ingredient of the framework is the equivalence between the sign of the ``interaction information'' and a super/sub-additive property of the value of people's information. This provides an intuitive interpretation and an interesting application of the interaction information, which measures the amount of information shared by three random variables. We illustrate the power of this information theoretic framework by reproving two additional results within it: 1) that agents quickly agree when announcing (summaries of) beliefs in round robin fashion [Aaronson 2005]; and 2) results from [Chen et al 2010] on when prediction market agents should release information to maximize their payment. We also interpret the information theoretic framework and the above results in prediction markets by proving that the expected reward of revealing information is the conditional mutual information of the information revealed.

Citations (4)

Summary

We haven't generated a summary for this paper yet.