A Simple and Optimal Policy Design with Safety against Heavy-Tailed Risk for Stochastic Bandits (2206.02969v6)
Abstract: We study the stochastic multi-armed bandit problem and design new policies that enjoy both worst-case optimality for expected regret and light-tailed risk for regret distribution. Specifically, our policy design (i) enjoys the worst-case optimality for the expected regret at order $O(\sqrt{KT\ln T})$ and (ii) has the worst-case tail probability of incurring a regret larger than any $x>0$ being upper bounded by $\exp(-\Omega(x/\sqrt{KT}))$, a rate that we prove to be best achievable with respect to $T$ for all worst-case optimal policies. Our proposed policy achieves a delicate balance between doing more exploration at the beginning of the time horizon and doing more exploitation when approaching the end, compared to standard confidence-bound-based policies. We also enhance the policy design to accommodate the "any-time" setting where $T$ is unknown a priori, and prove equivalently desired policy performances as compared to the "fixed-time" setting with known $T$. Numerical experiments are conducted to illustrate the theoretical findings. We find that from a managerial perspective, our new policy design yields better tail distributions and is preferable than celebrated policies especially when (i) there is a risk of under-estimating the volatility profile, or (ii) there is a challenge of tuning policy hyper-parameters. We conclude by extending our proposed policy design to the stochastic linear bandit setting that leads to both worst-case optimality in terms of expected regret and light-tailed risk on the regret distribution.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.