Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Confidence-aware Self-Semantic Distillation on Knowledge Graph Embedding (2206.02963v3)

Published 7 Jun 2022 in cs.LG, cs.AI, and cs.CL

Abstract: Knowledge Graph Embedding (KGE), which projects entities and relations into continuous vector spaces, has garnered significant attention. Although high-dimensional KGE methods offer better performance, they come at the expense of significant computation and memory overheads. Decreasing embedding dimensions significantly deteriorates model performance. While several recent efforts utilize knowledge distillation or non-Euclidean representation learning to augment the effectiveness of low-dimensional KGE, they either necessitate a pre-trained high-dimensional teacher model or involve complex non-Euclidean operations, thereby incurring considerable additional computational costs. To address this, this work proposes Confidence-aware Self-Knowledge Distillation (CSD) that learns from the model itself to enhance KGE in a low-dimensional space. Specifically, CSD extracts knowledge from embeddings in previous iterations, which would be utilized to supervise the learning of the model in the next iterations. Moreover, a specific semantic module is developed to filter reliable knowledge by estimating the confidence of previously learned embeddings. This straightforward strategy bypasses the need for time-consuming pre-training of teacher models and can be integrated into various KGE methods to improve their performance. Our comprehensive experiments on six KGE backbones and four datasets underscore the effectiveness of the proposed CSD.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube