Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Stochastic Variance-Reduced Newton: Accelerating Finite-Sum Minimization with Large Batches (2206.02702v2)

Published 6 Jun 2022 in math.OC, cs.LG, and stat.ML

Abstract: Stochastic variance reduction has proven effective at accelerating first-order algorithms for solving convex finite-sum optimization tasks such as empirical risk minimization. Incorporating second-order information has proven helpful in further improving the performance of these first-order methods. Yet, comparatively little is known about the benefits of using variance reduction to accelerate popular stochastic second-order methods such as Subsampled Newton. To address this, we propose Stochastic Variance-Reduced Newton (SVRN), a finite-sum minimization algorithm that provably accelerates existing stochastic Newton methods from $O(\alpha\log(1/\epsilon))$ to $O\big(\frac{\log(1/\epsilon)}{\log(n)}\big)$ passes over the data, i.e., by a factor of $O(\alpha\log(n))$, where $n$ is the number of sum components and $\alpha$ is the approximation factor in the Hessian estimate. Surprisingly, this acceleration gets more significant the larger the data size $n$, which is a unique property of SVRN. Our algorithm retains the key advantages of Newton-type methods, such as easily parallelizable large-batch operations and a simple unit step size. We use SVRN to accelerate Subsampled Newton and Iterative Hessian Sketch algorithms, and show that it compares favorably to popular first-order methods with variance~reduction.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube