Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Emergent specialization from participation dynamics and multi-learner retraining (2206.02667v3)

Published 6 Jun 2022 in cs.LG, cs.GT, and stat.ML

Abstract: Numerous online services are data-driven: the behavior of users affects the system's parameters, and the system's parameters affect the users' experience of the service, which in turn affects the way users may interact with the system. For example, people may choose to use a service only for tasks that already works well, or they may choose to switch to a different service. These adaptations influence the ability of a system to learn about a population of users and tasks in order to improve its performance broadly. In this work, we analyze a class of such dynamics -- where users allocate their participation amongst services to reduce the individual risk they experience, and services update their model parameters to reduce the service's risk on their current user population. We refer to these dynamics as \emph{risk-reducing}, which cover a broad class of common model updates including gradient descent and multiplicative weights. For this general class of dynamics, we show that asymptotically stable equilibria are always segmented, with sub-populations allocated to a single learner. Under mild assumptions, the utilitarian social optimum is a stable equilibrium. In contrast to previous work, which shows that repeated risk minimization can result in (Hashimoto et al., 2018; Miller et al., 2021), we find that repeated myopic updates with multiple learners lead to better outcomes. We illustrate the phenomena via a simulated example initialized from real data.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube