Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 145 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 127 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent (2206.02617v7)

Published 6 Jun 2022 in cs.LG, cs.CR, cs.DS, and stat.ML

Abstract: Differentially private stochastic gradient descent (DP-SGD) is the workhorse algorithm for recent advances in private deep learning. It provides a single privacy guarantee to all datapoints in the dataset. We propose output-specific $(\varepsilon,\delta)$-DP to characterize privacy guarantees for individual examples when releasing models trained by DP-SGD. We also design an efficient algorithm to investigate individual privacy across a number of datasets. We find that most examples enjoy stronger privacy guarantees than the worst-case bound. We further discover that the training loss and the privacy parameter of an example are well-correlated. This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees. For example, on CIFAR-10, the average $\varepsilon$ of the class with the lowest test accuracy is 44.2\% higher than that of the class with the highest accuracy.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.