Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Load Balancing Using Sparse Communication (2206.02410v2)

Published 6 Jun 2022 in cs.DC, cs.SY, and eess.SY

Abstract: Load balancing across parallel servers is an important class of congestion control problems that arises in service systems. An effective load balancer relies heavily on accurate, real-time congestion information to make routing decisions. However, obtaining such information can impose significant communication overheads, especially in demanding applications like those found in modern data centers. We introduce a framework for communication-aware load balancing and design new load balancing algorithms that perform exceptionally well even in scenarios with sparse communication patterns. Central to our approach is state approximation, where the load balancer first estimates server states through a communication protocol. Subsequently, it utilizes these approximate states within a load balancing algorithm to determine routing decisions. We demonstrate that by using a novel communication protocol, one can achieve accurate queue length approximation with sparse communication: for a maximal approximation error of x, the communication frequency only needs to be O(1/x2). We further show, via a diffusion analysis, that a constant maximal approximation error is sufficient for achieving asymptotically optimal performance. Taken together, these results therefore demonstrate that highly performant load balancing is possible with very little communication. Through simulations, we observe that the proposed designs match or surpass the performance of state-of-the-art load balancing algorithms while drastically reducing communication rates by up to 90%.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets