Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Invariant Grounding for Video Question Answering (2206.02349v1)

Published 6 Jun 2022 in cs.CV

Abstract: Video Question Answering (VideoQA) is the task of answering questions about a video. At its core is understanding the alignments between visual scenes in video and linguistic semantics in question to yield the answer. In leading VideoQA models, the typical learning objective, empirical risk minimization (ERM), latches on superficial correlations between video-question pairs and answers as the alignments. However, ERM can be problematic, because it tends to over-exploit the spurious correlations between question-irrelevant scenes and answers, instead of inspecting the causal effect of question-critical scenes. As a result, the VideoQA models suffer from unreliable reasoning. In this work, we first take a causal look at VideoQA and argue that invariant grounding is the key to ruling out the spurious correlations. Towards this end, we propose a new learning framework, Invariant Grounding for VideoQA (IGV), to ground the question-critical scene, whose causal relations with answers are invariant across different interventions on the complement. With IGV, the VideoQA models are forced to shield the answering process from the negative influence of spurious correlations, which significantly improves the reasoning ability. Experiments on three benchmark datasets validate the superiority of IGV in terms of accuracy, visual explainability, and generalization ability over the leading baselines.

Citations (84)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube