Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 179 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 40 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Cannot See the Forest for the Trees: Aggregating Multiple Viewpoints to Better Classify Objects in Videos (2206.02116v1)

Published 5 Jun 2022 in cs.CV

Abstract: Recently, both long-tailed recognition and object tracking have made great advances individually. TAO benchmark presented a mixture of the two, long-tailed object tracking, in order to further reflect the aspect of the real-world. To date, existing solutions have adopted detectors showing robustness in long-tailed distributions, which derive per-frame results. Then, they used tracking algorithms that combine the temporally independent detections to finalize tracklets. However, as the approaches did not take temporal changes in scenes into account, inconsistent classification results in videos led to low overall performance. In this paper, we present a set classifier that improves accuracy of classifying tracklets by aggregating information from multiple viewpoints contained in a tracklet. To cope with sparse annotations in videos, we further propose augmentation of tracklets that can maximize data efficiency. The set classifier is plug-and-playable to existing object trackers, and highly improves the performance of long-tailed object tracking. By simply attaching our method to QDTrack on top of ResNet-101, we achieve the new state-of-the-art, 19.9% and 15.7% TrackAP_50 on TAO validation and test sets, respectively.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.